

Uranium (USD/Ib) 15 YEARS (Monday, November 22, 1993 - Saturday, November 22, 2008)

URANIUM WORLD MINE PRODUCTION 2008 (43,930 t)*

HISTORICAL URANIUM PRODUCTION UP TO 2006 (2.2 Mt)

Identified uranium resources by deposit type (2005)

	Reasonably Assured Resources					Inferred Resources*						
Geological type of deposit	<usd 40="" kgu<="" th=""><th colspan="2"><usd 80="" kgu<="" th=""><th colspan="2"><usd 130="" kgu<="" th=""><th colspan="2"><usd 40="" kgu<="" th=""><th colspan="2"><usd 80="" kgu<="" th=""><th colspan="2"><usd 130="" kgu<="" th=""></usd></th></usd></th></usd></th></usd></th></usd></th></usd>		<usd 80="" kgu<="" th=""><th colspan="2"><usd 130="" kgu<="" th=""><th colspan="2"><usd 40="" kgu<="" th=""><th colspan="2"><usd 80="" kgu<="" th=""><th colspan="2"><usd 130="" kgu<="" th=""></usd></th></usd></th></usd></th></usd></th></usd>		<usd 130="" kgu<="" th=""><th colspan="2"><usd 40="" kgu<="" th=""><th colspan="2"><usd 80="" kgu<="" th=""><th colspan="2"><usd 130="" kgu<="" th=""></usd></th></usd></th></usd></th></usd>		<usd 40="" kgu<="" th=""><th colspan="2"><usd 80="" kgu<="" th=""><th colspan="2"><usd 130="" kgu<="" th=""></usd></th></usd></th></usd>		<usd 80="" kgu<="" th=""><th colspan="2"><usd 130="" kgu<="" th=""></usd></th></usd>		<usd 130="" kgu<="" th=""></usd>	
	10 ³ tU	%	10 ³ tU	%	10 ³ tU	%	10 ³ tU	%	10 ³ tU	%	10 ³ tU	%
Unconformity- related	433.2	22.2	492.2	18.6	498.5	15.1	151.6	19.0	169.6	14.6	171.3	11.8
Sandstone	552.5	28.4	716.5	27.1	986.6	29.9	172.9	21.6	256.3	22.1	301.6	20.9
Hematite breccia complex	513.3	26.4	513.3	19.4	522.4	15.8	281.9	35.3	286.9	24.7	288.5	20.0
Quartz-pebble conglomerate	85.6	4.4	153.3	5.8	229.3	7.0	50.5	6.3	72.0	6.2	84.8	5.9
Vein	0	0	84.0	3.2	258.8	7.9	14.8	1.9	136.1	11.7	231.8	16.0
Intrusive	63.7	3.3	150.6	5.7	202.9	6.2	60.6	7.6	81.1	7.0	109.6	7.6
Volcanic and caldera-related	49.9	2.6	135.5	5.1	140.3	4.3	1.5	0.2	5.7	0.5	7.1	0.5
Metasomatite	109.3	5.6	157.6	6.0	179.8	5.5	5.6	0.7	22.5	1.9	87.2	6.0
Other **	129.2	6.6	164.7	6.2	186.2	5.6	49.6	6.2	102.8	8.9	125.4	8.7
Unspecified	10.6	0.5	75.6	2.9	91.9	2.8	9.9	1.2	28.1	2.4	38.7	2.7
Total	1 947.3	100.0	2 643.3	100.0	3 296.7	100.0	799.0	100.0	1 161.0	100.0	1 446.2	100.0

* Formerly EAR-I with the name changed for the 2005 edition of the Red Book.

** Includes surficial, collapse breccia pipe, metamorphic, limestone and uranium coal deposits. Rock types with elevated uranium contents such as pegmatite, granites and black shale are not included.

Red Book (2006)

	(tonnes U)		17
	<usd 40="" kgu<="" th=""><th><usd 80="" kgu<="" th=""><th><usd 130="" kgu<="" th=""></usd></th></usd></th></usd>	<usd 80="" kgu<="" th=""><th><usd 130="" kgu<="" th=""></usd></th></usd>	<usd 130="" kgu<="" th=""></usd>
Unconformity-related	424 100	485 200	491 600
Sandstone	347 800	537 300	999 500
Hematite breccia complex	492 300	492 300	499 400
Quartz-pebble conglomerate	88 100	426 400	163 600
Vein	0	89 600	156 800
Intrusive	47 400	131 400	183 700
Volcanic and caldera-related	50 400	155 700	· L est 800
Metasomatite	121 200	291 300	304 900
Other *	162 300	221 000	284 300
Unspecified	32 800	67 800	96 700
Total	1 766 400	2 598 000	3 338 300

* Includes Surficial, Collapse breccia pipe, Phosphorite and other types of deposits, as well as rock types with elevated uranium content. Pegmatite and black shale are not included.

Red Book (2008)

^{*} Secretariat estimate.

Country	tU	Percentage of world total
USSR1	377 613	17.1
Canada	374 548	17.0
United States	356 485	16.2
Germany ²	219 239	9.9
South Africa	157 618	7.1
Others (total)	719 229	32.7
World total	2 204 732	100.0

Table 7.1. Leading uranium producer countries based on cumulative production (1945-2003)

1. Only includes production until 1991.

2. Includes production of German Democratic Republic (1946-1989) and Federal Republic of Germany (1961-2003).

Table 6.1. Countries with largest Known Conventional Resources recoverable at <USD 130/kgU (2003)¹

Country	tU	Percentage of world total		
Australia	1 058 000	23.1		
Kazakhstan	847 620	18.5		
Canada	438 544	9.6		
South Africa	395 670	8.6		
United States ²	345 000	7.5		
Others (total)	1 503 166	32.7		
World total	4 588 000	100.0		

1. Includes RAR and EAR-I resources at <USD 130/kgU.

2. The United States does not report resources in the EAR-I category.

Red Book (2006)

Uranium exploration expenditure and drilling in France

Uranium exploration expenditure and drilling in Canada

Uranium exploration expenditure and drilling in USA

(1) In situ resourcest = metric tonne · NA = Data not available

There is a gap in between uranium production and demand since about 1990 filled by recycled uranium and conversion of military stockpiles

Joachimsthal/Jachymov (Czech Republic)

Marie Curie Nobel-Preis für Physik 1903 Nobel-Preis für Chemie 1911

Lise Meitner Otto Hahn Nobel-Preis für Chemie 1955

Fission product mass ranges

Little Boy: Gun-style uranium bomb, exploded over Hiroshima, 6 Aug 1945

Estimated Minimum Incurred Costs of U.S. Nuclear Weapons Programs, 1946-1996*

in billions of constant 1996 dollars

Total - \$5,821.0 billion

remediation and waste management. Total actual and estimated expenditures through 1996 were \$5,481.1 billion.

Nevada Test Site

Aue (U): Wismut Museum

Power Reactor and Nuclear Fuel Development Corporation (PNC) Ningyo Toge, Japan

Chernobyl, Ukraine: Reactor (graphite) burning

Lava of reactor fuel in steam safety valve below the reactor

FIG. 3.5. Surface ground deposition of ¹³⁷Cs throughout Europe as a result of the Chernobyl accident [3.13].

FIGURE 2. AVERAGE INDIVIDUAL GLOBAL RADIATION DOSE in the 1990s from nuclear explosions, the Chernobyl accident, and commercial nuclear power plants combined was about 0.4% of the average natural dose of 2.2 mSv per year. In areas of Belarus, Ukraine, and Russia that were highly contaminated by Chernobyl fallout, the average individual dose was actually much lower than that in the regions with high natural radiation. The greatest man-made contribution to radiation dose has been irradiation from x-ray diagnostics in medicine, which accounts for about 20% of the average natural radiation dose. Natural exposure is assumed to be stable. The temporal trends in medical and local Chernobyl exposures are not presented. (Based on data from UNSCEAR.)

The Chernobyl explosion put 400 times more radio-Active material into the Earth's atmosphere than the Atomic bomb dropped on Hiroshima. Atomic weapons tests conducted in the 1950s and 1960s all together are estimated to have put some 100 to 1,000 times more radioactive material into the atmosphere than the Chernobyl accident.

Jaworowski (1999) Physics Today 52 (9): 24-29

Chernobyl

Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience

Report of the Chernobyl Forum Expert Group 'Environment'

The "New Safe Confinement" (NSC) to be constructed until 2012 at ~1.6 billion USD Span: 270 m; Height: 100 m; Length: 150 m)

C1 CHONDRITES BULK EARTH PRIMITIVE MANTLE BULK CRUST LOWER CRUST UPPER CRUST

24 Cr	2660 ppm	4120 ppm	2625 ppm	120 ppm	215 ppm	35 ppm
29 Cu	126 ppm	31 ppm	30 ppm	26 ppm	26 ppm	25 ppm
42 Mo	0.928 ppm	2.35 ppm	0.05 ppm	0.65 ppm	0.45 ppm	1.5 ppm
50 Sn	1.72 ppm	0.39 ppm	0.13 ppm	1.5 ppm	1.1 ppm	2.5 ppm
73 Ta	0.014 ppm	0.023 ppm	0.037 ppm	0.7 ppm	0.6 ppm	0.96 ppm
74 W	0.093ppm	0.18 ppm	0.029ppm	0.69 ppm	0.5 ppm	2.0 ppm
78 Pt	0.99 ppm	1.67 ppm	0.007 ppm	0.0018 ppm	0.0019 ppm	0.0015 ppm
79 Au	0.140ppm	0.26 ppm	0.001 ppm	0.003 ppm	0.0014ppm	0.0018ppm
82 Pb	2.5 ppm	0.115 ppm	0.15 ppm	12.5 ppm	4.3 ppm	20 ppm
92 U	0.008 ppm	0.014 ppm	0.02 ppm	1.4 ppm	0.28 ppm	2.8 ppm
Rb/Sr	0.295	0.032	0.028	0.17	0.03	0.32

U-Th decay series

Fig. 4-7. Concentration of uranium as a function of f_{O_2} in solutions saturated with respect to uraninite and/or rutherfordine at 25° C, a CO₂ pressure of 1 atm, and an ionic strength of about 0.02.

Rich et al (1977) Hydrothermal uranium deposits. Elsevier.

Fay Mine, Beaverlodge District, Canada: UO_2 -vein zone + hematite alteration Rich/Holland/Petersen (1977: 1)

Aue (Erzgebirge): Shear-zone controlled hematite alteration

Aue (Erzgebirge): Shear-zone controlled hematite alteration

Oberschlema-Aue, Erzgebirge: BiCoNi + U, As: black, Ag: grey

Aue: Longitudinal section: Ore shoots in black schist Total production: 73,000 t U; Grade: 0.4 % U

Eh-pH plot for the U-CO₂-H₂O system at 25°C for p_{CO2} 100 b

UO₂ solution boundaries are drawn at 10⁻⁶ M (0.24 ppm U)

General background: $U^{6+}_{(aqueous)}+2e^{-}=U^{4+}_{(solid)}$

Example: $UO_2(CO_3)_2^{2-}+2H^+ = UO_2+\frac{1}{2}O_2+2CO_2+H_2O$

Nash et al (1981) EG Anniv Vol: 68

Saskatchewan, Canada

Southern Saskatchewan, Canada: Les Prairies

Southern Saskatchewan, Canada: Les Prairies

Northern Saskatchewan, Canada

Northern Saskatchewan, Canada

Northern Saskatchewan, Canada

Past, Current, and Planned Uranium Mines

Significant Uranium Prospects

Athabasca Basin, northern Saskatchewan, Canada Total resource: ~600,000 t U, average grade: ~2% U

SE corner of the Athabasca Basin

Hydrothermal alteration in the Athabasca sandstone near the unconformity to the Archean/Paleoproterozoic basement (light pink color)

Key Lake: Gärtner pit

Key Lake: Deilmann pit Production of Deilmann + Gärtner pits: 40,000 t U (~1% U)

Key Lake: Deilmann Pit

Basal unit of the 1.7 Ga Athabasca sandstone

Basal unit of the 1.7 Ga Athabasca sandstone

Archean basement with graphite-rich rocks

Archean basement with sheared graphite-rich rocks

Key Lake: Deilmann Pit

Geology of the Key Lake uranium deposits

Longitudinal sections of the Key Lake uranium deposits ~40,000 t U

Cross section of the Deilmann orebody, Key Lake

Orebodies with up to 30 % U and 15 % Ni

Cross section of the Gärtner orebody, Key Lake

McArthur River mine, Metal tonnage: 80,000 t U (measured) At 15 % U + 63,000 t U (inferred) at 22%U

McArthur River high-grade drill core

McArthur River: Raiseboring after ground freezing

Raisebore drilling at McArthur River

Areva's Cigar Lake underground uranium mine Metal tonnage (measured): 87,000 t, Grade: 21% U
Rollfront uranium deposits in sandstone

Roll front uranium deposits

Lodève, France

Lodève, France

Tyuyamunite (Ca-U-V hydrate) from evapotranspiration. Wyoming, USA

Cameco's Highland in-situ leach (ISL) uranium mine in Wyoming, USA

Beverley ISL uranium mine in Australia (Heathgate Resources)

Chu-Sarysu and Syrdarya basins in central Kazakhstan: Resource in Late Cretaceous to Paleogene sandstone: 1.1 Gt U

FIG. 2. Schematic model for the formation of uranium-rich IOCG deposits. In this model, uranium-rich IOCG deposits probably require a rich source of wall-rock uranium within the host-rock sequence altered as part of the IOCG system. Additional uranium could also be contributed by magmatic or meteoric fluids.

Hitzman and Valenta (2005) EG 100: 1661

 Olympic Dam resources (2008):

 Measured resource
 1.3 Gt @ 1.11 % Cu, 0.28 kg/t U, 0.32 g/t Au, 2.17 g/t Ag

 Total resource
 8.3 Gt @ 0.88 % Cu, 0.24 kg/t U, 0.31 g/t Au, 1.50 g/t Ag

Rössing mine, Namibia in alaskite: 100,000 t U (0.037 % U) 4,000 t U/a; 69 % Rio Tinto, 16 % Govnt of Iran

Erongo Uranium Province

Quartz-pebble meta-conglomerate, Ventersdorp, 2.8 Ga, Witwatersrand, S-Africa

Uranium Isotopic Abundances

Solar system uranium today

238U	99.2745 %
235 U	0.7202 ± 0.0006 %

OKLO ²³⁵**U**

First measurement : 0.7171 % (a diff of 0.42 %) Typical value in Oklo fossil reactors: 0.65 % Lowest measurement : 0.29 %

Geological map of the Franceville basin, Gabon

FC-FE Chert, dolomite, volcanic rocks FB Black shale FA (100-1000 m) Sandstone, conglomerate

Franceville Series (1000-4000 m) 2.0 Ga

U ore deposits are all hosted in FA (average 0.1-1.0 % U, ore shoots up to 80 % U) and formed during early burial and diagenesis from mixing of oxidized uraniferous basin fluids and oil. Criticality in 15 high-grade zones (14 at Oklo, 1 at Bangombé was reached ~1950 Ma ago

Unconformity-related sandstone hosted deposits in sandstoneblack shale sequence on top of 3.0-2.6 Ga granite basement

Evins et al. 2005, GCA 69: 1590

Mounana

Ore processing plant

Oklo Today

Mining ceased in 1979

Pourcelot and Gauthier-Lafaye (1999) Chem Geol 157: 156

Pourcelot and Gauthier-Lafaye (1999) Chem Geol 157: 157

Reactor Requirements

Uranium Reactor: ²³⁵U 1-10 % Natural ²³⁵U 0.72%

U Fuel Quality Free of neutron

poisons (Cd, REE)

FISSION REACTOR

Moderator

Thermalised neutrons H_2O or C

Reactor Size

Able to utilise neutrons Fuel assemblage vol of cubic metres

Reactor Requirements

Uranium Reactor: ²³⁵U 1-10 % Natural ²³⁵U 0.72% Oklo ~3%

U Fuel Quality Free of neutron poisons (Cd, REE) √

FISSION REACTOR

Reactor Size

Able to utilise neutrons Fuel assemblage vol of cubic metres √

Oklo: a "Breeder" reactor

Retention of Fission Products at OKLO

