

Economic Geology

Summary

Module 6

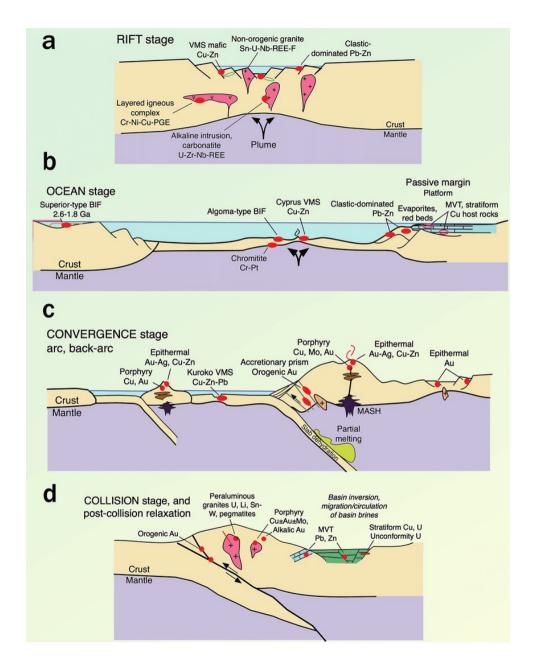
TU Clausthal

Content and structure

- Module 1: Intro, element abundance, plate tectonics, economics
- Module 2: Minerals, Rock types
- Module 3: Ore forming processes
- Module 4: Base metals and their ore deposit types
- Module 5: Precious and rare metals and their ore deposit types
- Module 6: Summary

Economic geology

- We are interested in finding metals that are enriched in the Earth crust in high enough concentrations to be mined at a profit.
- Many factors play a role whether a profit can be obtained or not (geological, technological, environmental, social, economic).



Ore deposit formation

- An accumulation of metals in the earth crusts is a geochemical anomaly and requires special physical and chemical processes.
- Ore deposits can be hosted in any of the three rock types.
- Structures are often important in guiding and focussing fluids.

Different ore deposits are related to certain tectonic settings and rock types. Important to consider for mineral exploration.

- Rift zones (continental)
 - Rise of mantle derived melts
 - Carbonatites (REE, Ta, Nb)
 - Alkaline intrusions (REE, Ta, Nb)

- Divergent margin
 - Heated seawater circulation, black smokers
 - Volcanic massive sulphide deposits (Cu-Pb-Zn)
 - Algoma type BIF
 - Intrusion of mafic and ultramafic melts
 - Magmatic massive sulphide deposits (Ni-Cu-PGE)
 - Chromite deposits

- Rift zones, basins
 - Circulation of basinal brines in sedimentary package
 - Sedimentary exhalative Pb-Zn deposits (SEDEX)
 - Mississippi Valley Type Pb-Zn deposits (MVT)
 - Sedimentary Cu deposits (Kupferschiefer)

- Rift zones, oceanic stage
 - Chemical sedimentation
 - Banded iron formation (BIF)

- Convergent margin (subduction zones)
 - Magma generation due to fluids released from subducting slab
 - Porphyry Cu-Mo-Au deposits
 - Epithermal Au-Ag deposits

- Convergent margin (collision, mountain building)
 - Metamorphic reactions, shear zones
 - Orogenic Au deposits
 - Partial melting of crust
 - Sn-W and rare element granites
 - Pegmatites

- Magmatic (mafic, ultramafic melts)
 - Melt immiscibility
 - Magma mixing
 - Magma contamination
 - Magmatic Ni-Cu-PGE massive sulphide deposits
 - Chromite deposits

- Magmatic (felsic melts)
 - Fractional crystallization (+some hydrothermal activity)
 - Rare-metal granites (REE, Sn-W)
 - Pegmatites (Li, Nb, Ta)
 - Carbonatites/alkaline intrusions (REE, Ta, Nb)

Hydrothermal

- Magmatic-hydrothermal
 - Fluids and metals originate from a magma
 - Porphyry Cu-Mo-Au deposits
 - Sn-W granites
 - Skarn deposits
 - Epithermal Au-Ag deposits (involve also some meteoric fluid)

- Hydrothermal
 - Seawater-hydrothermal (black smokers)
 - Seawater leaching metals from oceanic crust
 - Volcanic massive sulphide deposits (Pb-Zn-Cu)

- Hydrothermal
 - Basinal-hydrothermal
 - Basinal brines leaching metals from sediments/ basement
 - Fluid mixing
 - Sedimentary exhalative Pb-Zn deposits (SEDEX)
 - Mississippi Valley Type Pb-Zn deposits (MVT)
 - Sedimentary Cu deposits (Kupferschiefer)

- Hydrothermal
 - Metamorphic-hydrothermal
 - Metamorphic fluids released due to mineral dehydration reactions during metamorphism
 - Structural control, shear zones
 - Orogenic Au deposits

- Hydrothermal
 - Meteoric-hydrothermal
 - Meteoric fluids circulating through earth crust leaching metals. Minor mixing with other fluids or evaporation
 - Li Brine deposits
 - Epithermal Au-Ag deposits (low sulphidation type)

- Supergene enrichment
 - Weathering without erosion
 - Leaching of soluble elements, enriching insoluble elements. Redox reactions.
 - Bauxite (AI) deposits
 - Ni-laterite deposits
 - Supergene enrichment zones above e.g., porphyries

- Sedimentary processes
 - Physical sedimentation (heavy sands)
 - Fluvial transport, sorting
 - Placer deposits (Au, Sn, Ti, Zr)

- Sedimentary processes
 - Chemical sedimentation
 - Precipitation from (sea)water. Change in redox conditions.
 - Banded Iron Formation (BIF)
 - Manganese nodules

- Gold (Au)
 - Orogenic Au deposits
 - Epithermal Au-Ag deposits
 - Placer Au deposits
 - Porphyry Cu-Au deposits

- Copper(Cu)
 - Porphyry Cu-Mo-Au deposits
 - Sedimentary Cu deposits (Kupferschiefer, African copper belt)
 - Volcanic massive sulphide deposits
 - Magmatic massive sulphide Ni-Cu-PGE deposits

- Nickel (Ni)
 - Magmatic massive sulphide Ni-Cu-PGE deposits
 - Laterite (supergene enrichment)

- Plantinum group elements (PGE)
 - Magmatic massive sulphide Ni-Cu-PGE deposits

- Chromium (Cr)
 - Stratiform, layered mafic intrusions
 - Podiform, ophiolites

- Lead and zinc (Pb-Zn)
 - Sedimentary exhalative deposits (SEDEX)
 - Mississippi Valley type (MVT)
 - Volcanic massive sulphide deposits
 - Polymetallic veins

- Tin and tungsten (Sn-W)
 - Granites, veins
 - Skarn deposits
 - Placer deposits

- Iron (Fe)
 - Banded Iron Formation (BIF)
 - Ironstones

- Aluminium (AI)
 - Bauxite (supergene enrichment)

- Lithium (Li)
 - Pegmatites
 - Brines

- Rare earth elements (REE)
 - Carbonatites
 - Pegmatites
 - Alkaline intrusions
 - Supergene enrichment

- Tantalum and niobium (Ta-Nb)
 - Carbonatites
 - Pegmatites
 - Alkaline intrusions

- Carbon (C)
 - Diamonds
 - Kimberlites
 - Placer deposits
 - Graphite
 - Metamorphic deposits